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1 Asymptotic Consistency of the MLE and Likelihood-Based
Hypothesis Tests

1.1 Recap: Uniform convergence of random functions

Last time, we were interested in uniform convergence of the random functions given by the
sample mean of Wi(θ;Xi) = `1(θ;Xi)− `1(θ0;Xi). The nice thing about these is that

E[Wi(θ)] = DKL(θ || θ0),

which is ≤ 0, with equality iff Pθ = Pθ0 . We saw that θ̃n
p−→ θ0 if the Wi are continuous

and ‖Wn − E[Wn]‖∞
p−→ 0 on compact Θ (otherwise, we need an extra argument).

We also proved the helpful fact

Proposition 1.1. If ‖Gn − g‖∞
p−→ 0, tn

p−→ t, and Gn, g are continuous with compact
domain, then

Gn(tn)
p−→ g(t).

1.2 Asymptotic distribution of the MLE

Theorem 1.1. Suppose X1, . . . , Xn
iid∼ pθ0, where θ0 ∈ Θo ⊆ Rd. Assume that

• θ̂n
p−→ θ0, where θ̂n ∈ argmaxθ∈Θ `n(θ;X)

• In some neighborhood Bε(θ0) = {θ : ‖θ − θ0‖ ≤ ε} ⊆ Θo,

(i) `1(θ;X) has 2 continuous derivatives on Bε(θ0) for all x.

(ii) Eθ0 [supθ∈Bε
‖∇2`1(θ;Xi)‖] <∞.

(iii) Fisher information condition:

Eθ0 [∇`1(θ0;Xi)] = 0, Varθ0(∇`1(θ)) = −Eθ[∇2`1(θ0)] � 0.
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Then √
n(θ̂n − θ0) =⇒ Nd(0, J1(θ0)−1),

i.e. the MLE is asymptotically efficent.

The conditions in this theorem can be relaxed somewhat.

Proof. Let An be the event {‖θ̂n − θ0‖ ≥ ε}. Then Pθ0(An) → 0 by assumption. All we

care about is what happening on Acn. On Acn, θ̂n ∈ Bε(θ0), and

0 = ∇`n(θ̂n;X)

= ∇`n(θ0;X) +∇2`n(θ̃0;X)(θ̂n − θ0)

for some θ̃n. Now

√
n(θ̂n − θ0) =

(
1

n
∇2`n(θ̃n)

)−1

︸ ︷︷ ︸
p−→J1(θ0)−1

1√
n
∇`n(θ0)︸ ︷︷ ︸

=⇒ Nd(0,J1(θ))

,

=⇒ Nd(0, J1(θ0)−1).

The proof basically says that the second derivative of the likelihood is approximately
non-random and equals the Fisher information.

If the fisher information is very large, the second derivative of the likelihood function is
huge at θ0. This makes the likelihood more strongly peaked, so the MLE won’t be so far
from θ0.
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1.3 Likelihood-based hypothesis tests

We can develop likelihood-based tests based on measuring different aspects of the above

MLE picture. Let X1, . . . , Xn
iid∼ pθ(x), where pθ(x) is “smooth” in θ. Assume that

Eθ[∇`1(θ;Xi)] = 0, Varθ(∇`1(θ;Xi)) = −Eθ[∇2`1(θ;Xi)] = J1(θ) � 0,

and θ̂MLE
p−→ θ0. Then if θ = θ0,

1√
n
∇`n(θ0) =⇒ Nd(0, J1(θ0),

− 1

n
∇2`n(θ0)

p−→ J1(θ0),

√
n(θ̂n − θ0) =⇒ Nd(0, J1(θ)−1).

1.3.1 Wald-type confidence regions

Assume we have an estimator Ĵn � 0 such that 1
n Ĵn

p−→ J1(θ0) � 0. Then

(J1(θ0))1/2√n(θ̂n − θ0) =⇒ Nd(0, Id),

and by Slutsky’s theorem,

Ĵ1/2
n (θ̂n − θ0) =⇒ Nd(0, Id).

To get a test statistic, we can do the simplest (but not always the best) thing and take the
2-norm:

‖Ĵ1/2
n (θ̂n − θ0)‖2 =⇒ χ2

d.

Here,
P(‖Ĵ1/2

n (θ̂n − θ0)‖2 > χ2
d(α))→ α,

where χ2
d(α) is the upper-α quantile.

To test H0 : θ = θ0, we reject if ‖Ĵ1/2
n (θ̂n − θ0)‖22 > χ2

d(α). Equivalently, we can

say we reject θ0 iff Ĵ
1/2
n (θ̂n − θ0) /∈ Bχ2

d(α)(0). So we can reject θ0 if and only if θ0 /∈
θ̂ + Ĵ

1/2
n Bχ2

d(α)(0). This gives a confidence ellipsoid.

Here are some options for Ĵn:

1.

Ĵn = nJ1(θ̂n)

= nVarθ(∇`n(θ;X))|
θ=θ̂n

= nVar
θ̂n

(∇`n(θ̂n;X))
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2. Observed Fisher information:

Ĵn = −∇2`n(θ̂n;X)

The observed Fisher information is generally preferred and is used in practice. We can
get a Wald interval for θj by

θn ≈ Nd(θ0, Jn(θ0)−1),

which tells us that
θ̂n,j ≈ N(θ0,j , (Jn(θ0)−1)j,j).

So the univariate Wald interval for θj is

Cj = θ̂n,j ± ŝ.e.(θ̂n,j)zα/2

= θ̂n,j ±
√

(Ĵ−1
n )j,jzα/2

1.3.2 The score test

Here is a test which only assumes normality of the Fisher information. Test J0 : θ = θ0 vs
H1 : θ 6= θ0. Then

1√
n
∇`n(θ0;X)

H0=⇒ Nd(0, J1(θ0)),

and the score statistic looks like

Jn(θ0)−1/2∇`n(θ0;X)
H0=⇒ Nd(0, Id).

So we reject H0 if ‖Jn(θ0)−1/2∇`n(θ0;X)‖2 > χ2
d(α).

If d = 1, this looks like
˙̀
n(θ0)√
Jn(θ0)

=⇒ N(0, 1).

This is actually invariant of parameterization. For simplicity of notation, assume d = 1 for
now. Let θ = g(ζ) with ζ̇) > 0 be a reparameterization, and denote qζ(x) = pg(ζ)(x). Then
the score is

˙̀(ζ)(ζ, x) =
d

dζ
log pg(ζ)(x)

= ˙̀(g(ζ))ġ(ζ)

by the chain rule. The Fisher information is

J (ζ)(ζ) = J (θ)(g(ζ)ġ(ζ)2.

So the score statistic is unchanged by the parameterization.
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Example 1.1. Let X1, . . . , Xn
iid∼ eη

>T (x)−A(η)h(x) be an s-parameter exponential family.
THen

∇`n(η) =

(
n∑
i=1

T (Xi)

)
− nµ(ζ), where µ(η) = Eη[T (Xi)].

Then ∥∥∥∥∥Jn(η0)−1/2

(∑
i

T (Xi)− nµ(η)

)∥∥∥∥∥
2

2

=⇒ χ2
d

gives us our test. In particular, if d = 1, we get∑
i T (Xi)− nµ(η0)√
nVarη0(T (X1))

H0=⇒ N(0, 1),

so this is a Z-test.

The test statistic for the score test is

‖(J1(θ0))−1/2 1√
n
∇`n(θ0)‖2,

while the test statistic for the Wald test is

‖Ĵ1/2
1

√
n(θ̂n − θ0)‖2,

where
√
n(θ̂n − θ0) ≈ J1(θ−1

0 ) 1
n∇`n(θ0). So these are asymptotically the same test.
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