Statistics 210A Lecture 23 Notes

Daniel Raban

November 16, 2021

1 Asymptotic Consistency of the MLE and Likelihood-Based Hypothesis Tests

1.1 Recap: Uniform convergence of random functions

Last time, we were interested in uniform convergence of the random functions given by the sample mean of $W_i(\theta; X_i) = \ell_1(\theta; X_i) - \ell_1(\theta_0; X_i)$. The nice thing about these is that

$$\mathbb{E}[W_i(\theta)] = D_{\mathrm{KL}}(\theta \mid\mid \theta_0),$$

which is ≤ 0 , with equality iff $P_{\theta} = P_{\theta_0}$. We saw that $\tilde{\theta}_n \xrightarrow{p} \theta_0$ if the W_i are continuous and $\|\overline{W}_n - \mathbb{E}[\overline{W}_n]\|_{\infty} \xrightarrow{p} 0$ on compact Θ (otherwise, we need an extra argument).

We also proved the helpful fact

Proposition 1.1. If $||G_n - g||_{\infty} \xrightarrow{p} 0$, $t_n \xrightarrow{p} t$, and G_n, g are continuous with compact domain, then

$$G_n(t_n) \xrightarrow{p} g(t).$$

1.2 Asymptotic distribution of the MLE

Theorem 1.1. Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} p_{\theta_0}$, where $\theta_0 \in \Theta^o \subseteq \mathbb{R}^d$. Assume that

- $\widehat{\theta}_n \xrightarrow{p} \theta_0$, where $\widehat{\theta}_n \in \operatorname{argmax}_{\theta \in \Theta} \ell_n(\theta; X)$
- In some neighborhood $B_{\varepsilon}(\theta_0) = \{\theta : \|\theta \theta_0\| \leq \varepsilon\} \subseteq \Theta^o$,
 - (i) $\ell_1(\theta; X)$ has 2 continuous derivatives on $B_{\varepsilon}(\theta_0)$ for all x.
 - (*ii*) $\mathbb{E}_{\theta_0}[\sup_{\theta \in B_{\varepsilon}} \|\nabla^2 \ell_1(\theta; X_i)\|] < \infty.$
 - (iii) Fisher information condition:

$$\mathbb{E}_{\theta_0}[\nabla \ell_1(\theta_0; X_i)] = 0, \qquad \operatorname{Var}_{\theta_0}(\nabla \ell_1(\theta)) = -\mathbb{E}_{\theta}[\nabla^2 \ell_1(\theta_0)] \succ 0.$$

Then

$$\sqrt{n}(\widehat{\theta}_n - \theta_0) \implies N_d(0, J_1(\theta_0)^{-1}),$$

i.e. the MLE is asymptotically efficient.

The conditions in this theorem can be relaxed somewhat.

Proof. Let A_n be the event $\{\|\widehat{\theta}_n - \theta_0\| \ge \varepsilon\}$. Then $\mathbb{P}_{\theta_0}(A_n) \to 0$ by assumption. All we care about is what happening on A_n^c . On A_n^c , $\widehat{\theta}_n \in B_{\varepsilon}(\theta_0)$, and

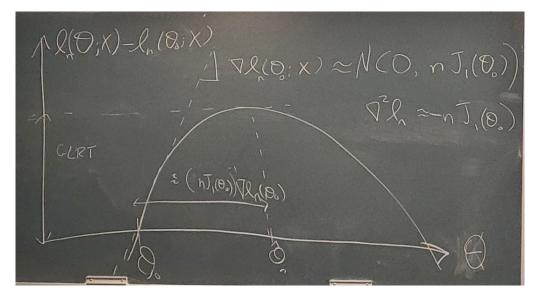
$$0 = \nabla \ell_n(\widehat{\theta}_n; X)$$

= $\nabla \ell_n(\theta_0; X) + \nabla^2 \ell_n(\widetilde{\theta}_0; X)(\widehat{\theta}_n - \theta_0)$

for some $\tilde{\theta}_n$. Now

$$\sqrt{n}(\widehat{\theta}_n - \theta_0) = \underbrace{\left(\frac{1}{n}\nabla^2 \ell_n(\widetilde{\theta}_n)\right)^{-1}}_{\stackrel{\underline{p}}{\longrightarrow} J_1(\theta_0)^{-1}} \underbrace{\frac{1}{\sqrt{n}}\nabla \ell_n(\theta_0)}_{\stackrel{\underline{p}}{\longrightarrow} N_d(0, J_1(\theta))} \\ \implies N_d(0, J_1(\theta_0)^{-1}). \qquad \Box$$

The proof basically says that the second derivative of the likelihood is approximately non-random and equals the Fisher information.



If the fisher information is very large, the second derivative of the likelihood function is huge at θ_0 . This makes the likelihood more strongly peaked, so the MLE won't be so far from θ_0 .

1.3 Likelihood-based hypothesis tests

We can develop likelihood-based tests based on measuring different aspects of the above MLE picture. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} p_{\theta}(x)$, where $p_{\theta}(x)$ is "smooth" in θ . Assume that

$$\mathbb{E}_{\theta}[\nabla \ell_1(\theta; X_i)] = 0, \qquad \text{Var}_{\theta}(\nabla \ell_1(\theta; X_i)) = -\mathbb{E}_{\theta}[\nabla^2 \ell_1(\theta; X_i)] = J_1(\theta) \succ 0,$$

and $\widehat{\theta}_{MLE} \xrightarrow{p} \theta_0$. Then if $\theta = \theta_0$,

$$\frac{1}{\sqrt{n}} \nabla \ell_n(\theta_0) \implies N_d(0, J_1(\theta_0),$$
$$-\frac{1}{n} \nabla^2 \ell_n(\theta_0) \stackrel{p}{\to} J_1(\theta_0),$$
$$\sqrt{n}(\widehat{\theta}_n - \theta_0) \implies N_d(0, J_1(\theta)^{-1}).$$

1.3.1 Wald-type confidence regions

Assume we have an estimator $\widehat{J}_n \succ 0$ such that $\frac{1}{n} \widehat{J}_n \xrightarrow{p} J_1(\theta_0) \succ 0$. Then

$$(J_1(\theta_0))^{1/2}\sqrt{n}(\widehat{\theta}_n - \theta_0) \implies N_d(0, I_d),$$

and by Slutsky's theorem,

$$\widehat{J}_n^{1/2}(\widehat{\theta}_n - \theta_0) \implies N_d(0, I_d).$$

To get a test statistic, we can do the simplest (but not always the best) thing and take the 2-norm:

$$\|\widehat{J}_n^{1/2}(\widehat{\theta}_n - \theta_0)\|^2 \implies \chi_d^2$$

Here,

$$\mathbb{P}(\|\widehat{J}_n^{1/2}(\widehat{\theta}_n - \theta_0)\|^2 > \chi_d^2(\alpha)) \to \alpha,$$

where $\chi_d^2(\alpha)$ is the upper- α quantile.

To test $H_0: \theta = \theta_0$, we reject if $\|\widehat{J}_n^{1/2}(\widehat{\theta}_n - \theta_0)\|_2^2 > \chi_d^2(\alpha)$. Equivalently, we can say we reject θ_0 iff $\widehat{J}_n^{1/2}(\widehat{\theta}_n - \theta_0) \notin B_{\chi_d^2(\alpha)}(0)$. So we can reject θ_0 if and only if $\theta_0 \notin \widehat{\theta} + \widehat{J}_n^{1/2} B_{\chi_d^2(\alpha)}(0)$. This gives a *confidence ellipsoid*.

Here are some options for \widehat{J}_n :

1.

$$\begin{aligned} \widehat{J}_n &= n J_1(\widehat{\theta}_n) \\ &= n \operatorname{Var}_{\theta}(\nabla \ell_n(\theta; X))|_{\theta = \widehat{\theta}_n} \\ &= n \operatorname{Var}_{\widehat{\theta}_n}(\nabla \ell_n(\widehat{\theta}_n; X)) \end{aligned}$$

2. Observed Fisher information:

$$\widehat{J}_n = -\nabla^2 \ell_n(\widehat{\theta}_n; X)$$

The observed Fisher information is generally preferred and is used in practice. We can get a *Wald interval* for θ_j by

$$\theta_n \approx N_d(\theta_0, J_n(\theta_0)^{-1}),$$

which tells us that

$$\widehat{\theta}_{n,j} \approx N(\theta_{0,j}, (J_n(\theta_0)^{-1})_{j,j}).$$

So the **univariate Wald interval** for θ_j is

$$C_{j} = \widehat{\theta}_{n,j} \pm \widehat{\text{s.e.}}(\widehat{\theta}_{n,j}) z_{\alpha/2}$$
$$= \widehat{\theta}_{n,j} \pm \sqrt{(\widehat{J}_{n}^{-1})_{j,j}} z_{\alpha/2}$$

1.3.2 The score test

Here is a test which only assumes normality of the Fisher information. Test $J_0: \theta = \theta_0$ vs $H_1: \theta \neq \theta_0$. Then

$$\frac{1}{\sqrt{n}} \nabla \ell_n(\theta_0; X) \stackrel{H_0}{\Longrightarrow} N_d(0, J_1(\theta_0)),$$

and the score statistic looks like

$$J_n(\theta_0)^{-1/2} \nabla \ell_n(\theta_0; X) \stackrel{H_0}{\Longrightarrow} N_d(0, I_d).$$

So we reject H_0 if $||J_n(\theta_0)^{-1/2} \nabla \ell_n(\theta_0; X)||^2 > \chi_d^2(\alpha)$.

If d = 1, this looks like

$$\frac{\ell_n(\theta_0)}{\sqrt{J_n(\theta_0)}} \implies N(0,1).$$

This is actually invariant of parameterization. For simplicity of notation, assume d = 1 for now. Let $\theta = g(\zeta)$ with $\dot{\zeta} > 0$ be a reparameterization, and denote $q_{\zeta}(x) = p_{g(\zeta)}(x)$. Then the score is

$$\dot{\ell}^{(\zeta)}(\zeta, x) = \frac{d}{d\zeta} \log p_{g(\zeta)}(x)$$
$$= \dot{\ell}(g(\zeta))\dot{g}(\zeta)$$

by the chain rule. The Fisher information is

$$J^{(\zeta)}(\zeta) = J^{(\theta)}(g(\zeta)\dot{g}(\zeta)^2.$$

So the score statistic is unchanged by the parameterization.

Example 1.1. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} e^{\eta^\top T(x) - A(\eta)} h(x)$ be an *s*-parameter exponential family. THen

$$\nabla \ell_n(\eta) = \left(\sum_{i=1}^n T(X_i)\right) - n\mu(\zeta), \quad \text{where } \mu(\eta) = \mathbb{E}_{\eta}[T(X_i)].$$

Then

$$\left\| J_n(\eta_0)^{-1/2} \left(\sum_i T(X_i) - n\mu(\eta) \right) \right\|_2^2 \implies \chi_d^2$$

gives us our test. In particular, if d = 1, we get

$$\frac{\sum_{i} T(X_{i}) - n\mu(\eta_{0})}{\sqrt{n \operatorname{Var}_{\eta_{0}}(T(X_{1}))}} \xrightarrow{H_{0}} N(0, 1),$$

so this is a Z-test.

The test statistic for the score test is

$$|(J_1(\theta_0))^{-1/2} \frac{1}{\sqrt{n}} \nabla \ell_n(\theta_0)||^2,$$

while the test statistic for the Wald test is

$$\|\widehat{J}_1^{1/2}\sqrt{n}(\widehat{\theta}_n - \theta_0)\|^2,$$

where $\sqrt{n}(\hat{\theta}_n - \theta_0) \approx J_1(\theta_0^{-1}) \frac{1}{n} \nabla \ell_n(\theta_0)$. So these are asymptotically the same test.